Apoptosis induced by prolonged exposure to odorants in cultured cells from rat olfactory epithelium.
نویسندگان
چکیده
Multicellular organisms undergo programmed cell death (PCD) as a mechanism for tissue remodeling during development and tissue renewal throughout adult life. Overdose of some neuronal receptor agonists like glutamate can trigger a PCD process termed excitotoxicity in neurons of the central nervous system. Calcium has an important role in PCD processes, especially in excitotoxicity. Since the normal turnover of olfactory receptor neurons (ORNs) relies, at least in part, on an apoptotic mechanism and odor transduction in ORNs involves an increase in intracellular Ca2+ concentration ([Ca2+]i), we investigated the possibility that long-term exposures to odorants could trigger an excitotoxic process in olfactory epithelial cells (EC). We used single-cell [Ca2+]i determinations and fluorescence microscopy techniques to study the effects of sustained odorant exposures in olfactory EC in primary culture. Induction of PCD was evaluated successively by three independent criteria: (1) measurements of DNA fragmentation, (2) translocation of phosphatidylserine to the external leaflet of the plasma membrane, and (3) caspase-3 activation. Our results support the notion of an odorant-induced PCD in olfactory EC. This odorant-induced PCD was prevented by LY83583, an odorant response inhibitor, suggesting that ORNs are the main epithelial cell population undergoing odorant-induced PCD.
منابع مشابه
Odorant-induced activation of extracellular signal-regulated kinase/mitogen-activated protein kinase in the olfactory bulb promotes survival of newly formed granule cells.
Extracellular signal-regulated kinase 1/2 (Erk1/2)/mitogen-activated protein (MAP) kinase (MAPK) plays a significant role in neuronal survival, including odorant-induced, activity-dependent survival of olfactory sensory neurons in the main olfactory epithelium. Here, we examined the role of MAPK for the survival of neurons in the olfactory bulb. To study odorant-induced activation of MAPK in th...
متن کاملImmunohistological and electrophysiological characterization of Globose basal stem cells
Objective(s): In the past few decades, variety of foetal, embryonic and adult stem and progenitor cells have been tried with conflicting outcome for cell therapy of central nervous system injury and diseases. Cellular characteristics and functional plasticity of Globose basal stem cells (GBCs) residing in the olfactory epithelium of rat olfactory mucosa have not been studied in the past by the ...
متن کاملOdorants as cell-type specific activators of a heat shock response in the rat olfactory mucosa.
Heat shock, or stress, proteins (HSPs) are induced in response to conditions that cause protein denaturation. Activation of cellular stress responses as a protective and survival mechanism is often associated with chemical exposure. One interface between the body and the external environment and chemical or biological agents therein is the olfactory epithelium (OE). To determine whether environ...
متن کاملChemical determinants of the rat electro-olfactogram.
The chemical properties that determine the distribution of the electro-olfactogram were studied after exposure of a large area of the rat olfactory epithelium. Multiple electrodes were placed along the rostral border of endoturbinate IV on the midline of the nasal cavity. This array of electrodes spanned a region containing the four receptor gene expression zones described for the rat. The resp...
متن کاملEarly survival factor deprivation in the olfactory epithelium enhances activity-driven survival
The neuronal olfactory epithelium undergoes permanent renewal because of environmental aggression. This renewal is partly regulated by factors modulating the level of neuronal apoptosis. Among them, we had previously characterized endothelin as neuroprotective. In this study, we explored the effect of cell survival factor deprivation in the olfactory epithelium by intranasal delivery of endothe...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Brain research
دوره 1103 1 شماره
صفحات -
تاریخ انتشار 2006